ON THE DIOPHANTINE EQUATION OF SECOND
 DEGREE OF THE FORM

$$
\mathbf{3 X Y}=\mathbf{Z}(\mathbf{X}+\mathbf{Y})
$$

K. Meena*

S.Vidhyalakshmi**
S.Divya ${ }^{* * *}$

M.A.Gopalan**

Abstract

: The ternary quadratic Diophantine equation given by $3 \mathrm{XY}=\mathrm{Z}(\mathrm{X}+\mathrm{Y})$ is analyzed for its non-zero distinct integer points on it. A few interesting relations between the solutions and special number patterns namely Polygonal number, Pyramidal number, Pronic number, Stella Octangular number, Octahedral number and Nasty numbers are presented.

Keywords: Ternary, quadratic, integral solutions, Diophantine equation, unit fraction, Egyptian fraction.

2010 mathematics subject classification: 11D09

[^0]
INTRODUCTION:

The ternary quadratic Diophantine equations offer an unlimited field for research due to their variety [1,25]. For an extensive review of various problems, one may refer [2-3,4-20,23,24]. In [21], a few integer solutions of the Diophantine equation $3 X Y=n(X+Y)$, have been obtained by employing the Egyptian fraction representation of the number $\frac{3}{n}$. In this context one may refer $[4,22]$. These results have motivated us for obtaining infinitely many non-zero distinct positive integer solutions to the ternary quadratic Diophantine equation given by $3 \mathrm{XY}=\mathrm{Z}(\mathrm{X}+\mathrm{Y})$. Also, a few interesting relations among the solutions are presented.

NOTATIONS:

* $\mathrm{P}_{\mathrm{n}}^{\mathrm{m}}:$ Pyramidal number of rank n with m sides
* $\mathrm{T}_{\mathrm{m}, \mathrm{n}}:$ Polygonal number of rank with m sides
\# $\operatorname{Pr}_{\mathrm{n}}$: Pronic number of rank n
SO_{n} : stella Octangular number of rank n
OH_{n} : Octhedral number of rank n

METHOD OF ANALYSIS:

The ternary quadratic Diophantine equation to be solved for its non-zero integer solutions is given by

$$
\begin{equation*}
3 X Y=Z(X+Y) \tag{1}
\end{equation*}
$$

To start with, it is noted that (1) is satisfied by

$$
(X, Y, Z)=(2,2,3),(k+1, k[k+1], 3 k),(2,1,2),(3-k, k, k[3-k])
$$

However, we have an another choice of solutions which is illustrated below.
The substitution of the linear transformations

$$
\begin{equation*}
X=u+v, Y=u-v,(u \neq v \neq 0) \tag{2}
\end{equation*}
$$

in (1) leads to $3 u^{2}-2 u z-3 v^{2}=0$

Treating (3) as a quadratic in u and solving for u , we get

$$
\begin{equation*}
\mathrm{u}=\frac{1}{3}\left[\mathrm{Z} \pm \sqrt{\mathrm{Z}^{2}+9 \mathrm{v}^{2}}\right] \tag{4}
\end{equation*}
$$

Employing the standard solutions of the Pythagorean equation, the square-root on R.H.S of (4) is eliminated when
$\mathrm{Z}=2 \mathrm{mn}, \mathrm{v}=\frac{1}{3}\left(\mathrm{~m}^{2}-\mathrm{n}^{2}\right),(\mathrm{m}>\mathrm{n}>0)$
As our interest is on finding integer solutions, note that v is an integer
when m and n are replaced by $3 M$ and $3 N(M>N)$ respectively.
Then, we have
$\mathrm{Z}=18 \mathrm{MN}, \mathrm{v}=3\left(\mathrm{M}^{2}-\mathrm{N}^{2}\right), \mathrm{M}>\mathrm{N}>0$
and from (4), $u=6 M N \pm 3\left(M^{2}+N^{2}\right)$
Substituting the above values of u and v in (2), the two sets of non-zero distinct integer solutions to (1) are as follows:

SET 1:

$\mathrm{X}(\mathrm{M}, \mathrm{N})=6 \mathrm{M}(\mathrm{M}+\mathrm{N})$
$\mathrm{Y}(\mathrm{M}, \mathrm{N})=6 \mathrm{~N}(\mathrm{M}+\mathrm{N})$
$\mathrm{Z}(\mathrm{M}, \mathrm{N})=18 \mathrm{MN}$

PROPERTIES:

* $\mathrm{X}(1, \mathrm{~N})+\mathrm{Y}(1, \mathrm{~N})-\mathrm{T}_{14, \mathrm{~N}} \equiv 6(\bmod 17)$
* $\mathrm{X}\left(\mathrm{N}^{2}, \mathrm{~N}+1\right)+\mathrm{Y}\left(\mathrm{N}^{2}, \mathrm{~N}+1\right)-24 \mathrm{P}_{\mathrm{N}}^{5}-\mathrm{T}_{26, \mathrm{~N}} \equiv 6(\bmod 23)$
* $\mathrm{Y}\left(\mathrm{M}, 2 \mathrm{M}^{2}-1\right)+\mathrm{Z}\left(\mathrm{M}, 2 \mathrm{M}^{2}-1\right)-24 \mathrm{SO}_{\mathrm{M}}+24 \mathrm{~T}_{4, \mathrm{M}^{2}}-24 \mathrm{~T}_{4, \mathrm{M}} \equiv 0(\bmod 6)$
* $\mathrm{X}(\mathrm{M}, 1)+\mathrm{Z}(\mathrm{M}, 1)-6 \mathrm{~T}_{4, \mathrm{M}} \equiv 0(\bmod 3)$
* $\mathrm{X}(\mathrm{M}, 1)+\mathrm{Y}(\mathrm{M}, 1)-\mathrm{T}_{10, \mathrm{M}}-\mathrm{T}_{6, \mathrm{M}} \equiv 0(\bmod 2)$
* $\mathrm{X}(2, \mathrm{~N})+\mathrm{Y}(2, \mathrm{~N})-\mathrm{T}_{14, \mathrm{~N}} \equiv \mathrm{~N}(\bmod 4)$
* $Y(M+1[M+2], M)-6 T_{4, M}=36 P_{M}^{3}$
\& $Y(M, M+1)-6 T_{4, M}=6 \operatorname{Pr}_{M}$
* $\mathrm{Z}(\mathrm{N}, \mathrm{N})-\mathrm{Y}(\mathrm{N}, \mathrm{N})$ is a nasty number
* $\mathrm{X}(\mathrm{M}, \mathrm{M})+\mathrm{Y}(\mathrm{M}, \mathrm{M})$ is a nasty number

SET 2:

$$
\begin{aligned}
& X(M, N)=6 N(M-N) \\
& Y(M, N)=-6 M(M-N) \\
& Z(M, N)=18 M N
\end{aligned}
$$

PROPERTIES:

$$
\begin{array}{ll}
\not & X(M, 1)-Y(M, 1)-6 T_{4, M} \equiv 0(\bmod 3) \\
\& & X(M, 1)+Y(M, 1)+T_{14, M} \equiv-6(\bmod 7) \\
\& & Y\left(N^{2}, N+1\right)-12 P_{N}^{5}+T_{12, N}+T_{4, N} \equiv 0(\bmod 2) \\
* & X(M, 1)+Z(M, 1) \equiv 0(\bmod 6) \\
\& & Y(1,2 N) \equiv 0(\bmod 3) \\
\& & Y\left(N, 2 N^{2}+1\right)+6 T_{4, N}=18 O H_{N} \\
\& & X(N, N+1[N+2])+6 T_{4, N}=36 P_{N}^{3} \\
\& & X(N+1, N)+6 T_{4, N}=6 P_{N} \\
\& & X(-1, N)+6 \operatorname{Pr}_{N}=0 \\
\& & 2\{X(M, M)+Y(M, M)+Z(M, M)\} \text { is a nasty number }
\end{array}
$$

REMARK:

It is worth mentioning here that, the square-root on the R.H.S of (4) is also eliminated when

$$
\mathrm{Z}=\mathrm{m}^{2}-\mathrm{n}^{2}, \mathrm{v}=\frac{2}{3} \mathrm{mn}, \mathrm{~m}>\mathrm{n}>0 .
$$

Employing the procedure similar to the above, one obtains two sets of non-zero distinct integer solutions to (1) which are presented below:

SET 3:

$X(m, n)=6 m^{2}+2 m n$
$Y(m, n)=6 m^{2}-2 m n$
$\mathrm{Z}(\mathrm{m}, \mathrm{n})=9 \mathrm{~m}^{2}-\mathrm{n}^{2}$

SET 4:

$$
\begin{aligned}
& X(m, n)=6 n(m-n) \\
& Y(m, n)=-6 n(m+n) \\
& Z(m, n)=9\left(m^{2}-n^{2}\right)
\end{aligned}
$$

CONCLUSION:

In this paper we have presented infinitely many non-zero integer solutions to the ternary quadratic Diophantine equation $3 \mathrm{XY}=\mathrm{Z}(\mathrm{X}+\mathrm{Y})$. It seems that the positive integer solutions presented in this paper are different from those in [21].

REFERENCES:

[1] Dickson, L.E., History of Theory of Numbers, Vol.2,Chelsea Publishing company, NewYork, 1952
[2] Divya,S., Gopalan, M.A., Vidhyalakshmi, S., Lattice points on the homogeneous cone $X^{2}+Y^{2}=40 Z^{2}$,the Experiment, vol.17(3), 1191-1199, 2013
[3] Meena, K., Vidhyalakshmi, S., Divya, S., Gopalan, M.A., Integral points on the cone $Z^{2}=41 X^{2}+Y^{2}$,Scholars journal of engineering and technology, sch.j.eng.tech, 2(2B), 301-304, 2014
[4] Erdos, P., Straus, E.G., On a Diophantine equation, Math. Lapok, 1:192-210, 1950.
[5] Gopalan, M.A.,Pandichevi, V., Integral solution of ternary quadratic equation $z(x+y)=4 x y$, Actociencia Indica, ,Vol. XXXIVM, No.3, 1353-1358, 2008
[6] Gopalan, M.A.,Kalinga Rani, J., Observation on the Diophantine equation, $y^{2}=D x^{2}+z^{2}$

Impact J.sci tech ; Vol (2), 91-95, 2008
[7] Gopalan, M.A.,Pandichevi, V., on ternary quadratic equation $x^{2}+y^{2}=z^{2}+1$, Impact J.sci tech; ,Vol 2(2), 55-58. 2008
[8] Gopalan, M.A., Manju somanath, Vanitha,N., Integral solutions of ternary quadratic Diophantine equation $x^{2}+y^{2}=\left(k^{2}+1\right)^{n} z^{2}$. Impact J.sci tech; Vol 2(4), 175-178, 2008,
[9] Gopalan, M.A., Manju somanath, Integral solution of ternary quadratic Diophantine equation $x y+y z=z x$ AntarticaJ,Math, 1-5,5(1), 2008.
[10] Gopalan,M.A.,and Gnanam,A., Pythagorean triangles and special polygonal numbers, international Journal of Mathematical Science, Vol.(9),No.1-2,211-215, Jan-Jun 2010
[11] Gopalan, M.A., and Vijayasankar, A.,Observations on a Pythagorean problem, Acta Ciencia Indica, Vol.XXXVIM, No.4,517-520, 2010,
[12] Gopalan.M.A., and pandichelvi.V., Integral solutions of ternary quadratic equation $z(x-y)=4 x y$, Impact J.sci TSech; Vol (5),No.1,01-06, 2011
[13] Gopalan, M.A.,Kalinga Rani, J.On ternary quadratic equation $x^{2}+y^{2}=z^{2}+8$,Impact J.sci tech ; Vol (5), no.1,39-43,2011
[14] Gopalan, M.A., Geetha, D., Lattice points on the hyperbolid of two sheets $x^{2}-6 x y+y^{2}+6 x-2 y+5=z^{2}+4$, Impact J.sci tech ; $\operatorname{Vol}(4), N o .1,23-32,2010$
[15] Gopalan, M.A., Vidhyalakshmi, S., and Kavitha, A., Integral points on the homogeneous Cone $z^{2}=2 x^{2}-7 y^{2}$, DiophantusJ.Math., 1(2),127-136, 2012
[16] Gopalan, M.A., Vidhyalakshmi, S., Sumathi,G., Lattice points on the hyperboloid one sheet $4 z^{2}=2 x^{2}+3 y^{2}-4$, DiophantusJ.math., 1(2),109-115,2012.
[17] Gopalan, M.A., Vidhyalakshmi, S., and Lakshmi,K., Integral points on the hyperboloid of two sheets $3 y^{2}=7 x^{2}-z^{2}+21$, DiophantusJ.math., 1(2),99-107,2012
[18] Gopalan, M.A., and Srividhya,G., Observations on $y^{2}=2 x^{2}+z^{2}$ Archimedes J.Math,
[19] Gopalan,M.A., Sangeetha,G.,Observation on $y^{2}=3 x^{2}-2 z^{2}$ AntarcticaJ.Math, 9(4), 359-362, 2012
[20] Gopalan,M.A., and Vijayalakshmi,R., On the ternary quadratic equation
$x^{2}=\left(\alpha^{2}-1\right)\left(y^{2}-z^{2}\right), \alpha>1$, Bessel J.Math, 2(2),147-151, 2012
[21] Hari kishan., Megha Rani., and Smiti Agarwal., The Diophantine equations of second and Higher degree of the form $3 x y=n(x+y)$ and $3 x y z=n(x y+y z+z x)$ etc, Asian journal of Algebra, 4(1), 31-37, 2011
[22] Jaroma, J.H., On expanding $\frac{4}{n}$ into three Egyptian fractions, Crux Math, 30: 36-37, 2004 [23]Manjusomanath, Sangeetha,G., Gopalan,M.A., On the homogeneous ternary quadratic Diophantine equation $x^{2}+(2 k+1) y^{2}=(k+1)^{2} z^{2}$, Bessel J.Math, 2(2),107-110, 2012
[24] Manjusomanath, Sangeetha,G., Gopalan,M.A., Observations on the ternary quadratic equation $y^{2}=3 x^{2}+z^{2}$, Bessel J.Math, 2(2),101-105, 2012
[25] Mordell, L.J., Diophantine equations, Academic press, New York, 1969

[^0]: * Former VC of Bharathidasan University, Trichy-620024, Tamilnadu, India.
 ${ }^{* *}$ Professor, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620002, Tamilnadu, India.
 ${ }^{* * *}$ M.Phil student, Department of Mathematics, Shrimati Indira Gandhi College, Trichy- 620002, Tamilnadu, India.

